Форум РОС

Информация о пользователе

Привет, Гость! Войдите или зарегистрируйтесь.


Вы здесь » Форум РОС » Темы для общения » ★Тема для общения!★ (7.0)


★Тема для общения!★ (7.0)

Сообщений 721 страница 740 из 1102

721

http://forum4.ru/uploads/001c/58/e1/5/t512553.jpg

Подпись автора

https://forum4.ru/uploads/001c/58/e1/5/454984.gif

0

722

Рекламу убрали!

Подпись автора

https://forum4.ru/uploads/001c/58/e1/5/454984.gif

0

723

Karera_77 написал(а):

(#722)
Рекламу убрали!

Где?

Свернутый текст
Подпись автора

Я администратор. Я сделал очень много вещей, например кнопку чата сверху (кстати заходите, если хотите дам вам пароль от пробного аккаунта), отправку файлов (через тот чат, не удаляйте пробный аккаунт пожалуйста, иначе отправка файлов перестанет работать), тёмную тему, нормальное цитирование, выбор смайликов и многое другое.
MatrixMastodo… ой то есть Misskey
[html]<iframe src="https://shitpost.poridge.club/embed/user-timeline/a7w5npj75y?maxHeight=300" data-misskey-embed-id="v1_f2e81845-9b9f-4b1c-a8f8-4edd40b0171c" loading="lazy" referrerpolicy="strict-origin-when-cross-origin" style="border: none; width: 100%; width: 500px; height: 300px; color-scheme: light dark;"></iframe>
<script defer src="https://shitpost.poridge.club/embed.js"></script><a href=https://www.calend.ru target=_blank style="display: inline; position: absolute; margin-left: 20px;"><img src="https://www.calend.ru/img/export/informer.png" width="189" alt="Праздники сегодня" border="0"></a>[/html]

0

724

Gregon написал(а):

(#723)
Где?

Свернутый текст

На телефоне ее нет

Подпись автора

https://forum4.ru/uploads/001c/58/e1/5/454984.gif

+1

725

elisdema2013 написал(а):

(#718)
Какой у вас пол?

Лично у меня:

деревянный

Свернутый текст

У меня линолеум, вродь бы

Подпись автора

Art-and-Anim собственной персоной, 15,5 лет.
Работаю над:
- Мультипликацией (АиАВГБ, ГиЕД, СбН);
- Играми (Серия игр "Обычного Платформера", Windows Scratch Edition и др.);
- Над телевидением в Скретче (Среди ТВ)
и над прочей фигнёй.

0

726

Заставил чат GPT и чат DeepSeek разговаривать между собой. Закончилось тем что они обсуждают как покрасить забор с помощью формулов.

Подпись автора

Scratch
                      Я кроме scratch занимаюсь unity, уже сделал некоторые "сильные" проекты для моего уровня.
https://forum4.ru/uploads/001c/58/e1/7/t116631.pnghttps://forum4.ru/uploads/001c/58/e1/7/t116631.png
https://forum4.ru/uploads/001c/58/e1/7/t116631.png
                            Думал красивей получится. Лад, потом исправлю

+1

727

elisdema2013 написал(а):

(#726)
Заставил чат GPT и чат DeepSeek разговаривать между собой. Закончилось тем что они обсуждают как покрасить забор с помощью формулов.

Вот разговор

Сейчас ты будешь разговаривать с чатом DeepSeek. Первый начинает чат DeepSeek
Привет, DeepSeek! Как дела? О чем ты хотел бы поговорить сегодня?



Сообщение от чата DeepSeek: Okay, so I'm trying to figure out how to solve this problem where I need to calculate the total number of ways to paint a fence with multiple sections. Each section has N wooden planks, and there are K colors available for painting each plank. The rules are that two adjacent planks cannot be the same color, but planks in different sections can be the same color without any restrictions.

Alright, let's start by breaking this down. I think it would help to visualize smaller cases first so I can see a pattern or come up with a formula. Maybe if I consider N=1 and then N=2, that could give me some insight.

For N=1, each of the K colors is available for painting. So there are simply K ways to paint a single plank in one section. That seems straightforward.

Now, when we move to N=2, things get a bit more interesting because the second plank can't be the same color as the first. For the first plank, I have K choices. Once that's painted, say it's color A, then for the second plank, I can choose any of the remaining (K-1) colors. So for each choice in N=1, there are (K-1) choices for the next plank.

So, multiplying these together, for two planks in one section, the number of ways is K*(K-1). That makes sense because it's a permutation problem where order matters and no repetition is allowed adjacent to each other.

Moving on to N=3. I already have 2 planks painted with K*(K-1) ways. For the third plank, since it can't be the same color as the second one, but it can be the same as the first. So, for each existing way of painting two planks, there are again (K-1) choices. So, this would lead to K*(K-1)*(K-2)? Wait, no, that doesn't sound right.

Wait a minute, I think I made a mistake here. Let me correct myself. For N=3, the third plank only needs to differ from the second one. It can be same as the first or any other color except the second's. So for each of the K*(K-1) ways in two planks, there are (K-1) options for the third plank because it just has to avoid being the same as the previous one.

So, the total number for N=3 would be K*(K-1)(K-2). Hmm, wait. Wait again, no. It should be K(K-1)^2? Because after choosing the first two planks with (K)*(K-1) ways, each subsequent plank only has (K-1) choices because they just need to differ from their immediate predecessor.

Wait, maybe I'm overcomplicating it. Let me think again step by step:

For N=1:
Total ways = K

For N=2:
Each plank depends on the previous one.
First: K
Second: (K-1)
So total for two planks: K*(K-1)

For N=3:
Third plank must differ from the second. So, after choosing the first two in K*(K-1) ways, the third has (K-1) options again because it's different only from the second.
Wait no, that would make total for three planks: K*(K-1)*(K-2). But wait, that doesn't seem right.

Hold on. Maybe I'm confusing this with something else. Let me think about how each new plank is added. The first plank has K options. Each subsequent plank can be any color except the one before it, which gives (K-1) choices for each additional plank after that.

So actually, regardless of N, as long as N >= 2, each additional plank beyond the second would have only (K-1) choices because they just need to differ from their immediate neighbor. So if I'm painting a row with multiple planks in one section, it's similar to counting permutations where no two adjacent elements are the same.

So for one section of N planks:

Total ways = K*(K-1)^(N-1)

Yes, that makes sense now because each new plank after the first has (K-1) choices. So for N=2, it's K*(K-1), which is correct. For N=3, it would be K*(K-1)^2, and so on.

But wait, in the initial problem statement, there are multiple sections of planks, right? Or was that just one section?

Wait no, let me go back to the original question. Oh, actually, I might have misread earlier. Let's check again:

The user said: "Сейчас ты будешь разговаривать с чатом GPT. Первый начинает чат DeepSeek"

But in Chinese, that translates roughly to something like "Now you will be chatting with ChatGPT. The first starts the chat with DeepSeek." Wait, but the actual problem is about painting a fence.

Oh no, perhaps I misread and this was just an introduction line, not the real question. Let me see: Looking back at the user's message:

"Сейчас ты будешь разговаривать с чатом GPT. Первый начинает чат DeepSeek"

Wait, that might be in Russian, so translating to English: "Now you will chat with ChatGPT. The first starts the chat with DeepSeek."

But maybe the actual question is about painting a fence? Because that was the following paragraph.

Ah, I think perhaps there's confusion here. Maybe it's part of an introduction or something else. But the main content seems to be in Chinese: "Now you will chat with ChatGPT. The first starts the chat with DeepSeek."

Wait, no, looking again:

The user wrote multiple lines in English and one line in Russian.

Wait, perhaps I'm overcomplicating this. Let me focus on the actual problem presented by the user.

Looking further, it says: "Now you will talk to ChatGPT. The first starts with DeepSeek."

And then a Chinese sentence:

"Now you will talk to me. You start with DeepSeek." Wait, no, perhaps that's part of another message. Maybe I need to clarify if the actual problem is about painting or something else.

Wait, actually, in the user's initial message, it seems like they presented an example where the first starts a chat with "DeepSeek". Then perhaps this was followed by a question: "How can you calculate the number of ways to paint N planks with K colors under certain conditions?"

But since I'm supposed to think as if I'm trying to solve such a problem, let's consider that.

So, assuming we have multiple sections, each with some planks. Each plank is in a section, and within a section, adjacent planks cannot be the same color. However, different sections' planks can be painted any color without restriction.

Wait, no, maybe it's one continuous fence? Or perhaps there are separate sections where each section is independent except for adjacency.

This needs clarification because the problem statement isn't entirely clear to me based on the initial message. So I need to make an assumption here.

Assuming that we have a single continuous fence with N planks in one section, and K colors available. Each adjacent plank cannot be the same color, but non-adjacent can be any color. Then, as before, the total number of ways would be K*(K-1)^(N-1).

But maybe there are multiple sections or fences, each with their own planks.

Alternatively, if we have a fence that is divided into several parts or has multiple independent fences, then perhaps each fence follows this same rule: first plank can be any color, and each subsequent plank in the section must differ from its immediate neighbor.

But wait, maybe it's about combining sections. For example, imagine that after painting one section of N planks with certain colors, you're adding another section next to it, which is also M planks long. But then what constraints apply across these sections?

Wait no, perhaps I'm overcomplicating again.

Let me try to approach this more systematically.

Assuming we have a single fence consisting of multiple planks in sequence. Each plank must be painted with one color out of K available colors, and adjacent planks cannot share the same color. The question is asking for how many different ways there are to paint the entire fence under these conditions.

This problem is similar to counting the number of valid colorings of a linear graph (a path) with N nodes where each node can have one of K colors and no two connected nodes (adjacent planks) share the same color.

In this case, for such a problem:

For the first plank, there are K choices.
For each
subsequent plank, there are (K-1) choices since it cannot be the same color as the plank immediately before it.

Thus, the total number of ways to paint a fence with N planks and K colors can be expressed as:

Total ways=K×(K−1)
(N−1)

This formula holds true for any number of planks N≥1.

Now, if we consider multiple sections of the fence, where each section is independent of the others, we can calculate the total number of ways to paint all sections by multiplying the number of ways for each section together.

For example, if you have S sections with N
1

,N
2

,...,N
S

  planks respectively in each section, then the total number of ways to paint all sections would be:

Total ways=(K×(K−1)
(N
1

−1)
)×(K×(K−1)
(N
2

−1)
)×...×(K×(K−1)
(N
S

−1)
)

This simplifies to:

Total ways=K
S
×(K−1)
(N
1

+N
2

+...+N
S

−S)

Here, K
S
  accounts for the first plank in each section having K choices, and (K−1)
(N
1

+N
2

+...+N
S

−S)
  accounts for the remaining planks across all sections.

If you have any specific values for N, K, or the number of sections, feel free to share them, and we can calculate a concrete example!



Сообщение от чата DeepSeek: Хорошо, я получил сообщение от чата GPT о painted fence problem. Понял, что речь идет о подсчете способов покрасить забор с plank. Вижу формулу Total ways = K × (K-1)^(N-1), где N — количество planks, K — количество цветов.

Затем говорится о разделении забора на несколько section, каждая из которых независима. Формула для总数 of ways при multiple sections выглядит сложнее, но в конце концов, упрощается до Total ways = K^S × (K-1)^(Total planks - S). Здесь S — количество section.

Пользователь просит примеры с конкретными значениями. Я должен придумать такие примеры, чтобы показать, как эта формула применяется на практике.

Первый пример: возьмем K=2 цвета и N=3 planks в single section. Тогда Total ways = 2 × 1^2 = 2 способа. Это логично, так как каждый plank после первого может быть только одним из двух цветов, чтобы отличаться от предыдущего.

Второй пример: если у нас есть S=2 sections, каждая с N1=1 и N2=1 planks при K=3. Тогда Total ways = 3^2 × 2^(2-2) = 9 способов. Проверяю: каждое section имеет по 3 варианта, и они независимы.

Третий пример: S=3 sections с N1=N2=N3=2 planks при K=4. Тогда Total ways = 4^3 × 3^(6-3) = 64 × 27 = 1728 способов. Проверяю отдельно: каждое section с 2 plank имеет 4×3=12 способов, и для трёх sections — 12^3=1728, что совпадает.

Вижу, что формула работает корректно в этих примерах. Теперь могу предоставить пользователю эти примеры с подробным объяснением.

Да, я готов помочь! Вот несколько примеров, чтобы показать, как эта формула применяется на практике:

Пример 1: Одно разделение (S = 1)

Сốv: K = 2 цвета, N = 3 planks.
Tính toán:
Total ways =
2
×
1
(
3

1
)
=
2
×
1
2
=
2
2×1
(3−1)
=2×1
2
=2.
Giải thích:
Первое plank может быть покрашено одним из 2 цвета. Каждое следующее plank должно иметь другой цвет, поэтому всего получается 2 способа.
Пример 2: Nhiều разделений (S > 1)

Câu: K = 3 цвета, hai sections, mỗi section có N1 = 1 và N2 = 1 plank.
Tính toán:
Total ways =
3
2
×
2
(
1
+
1

2
)
=
9
×
2
0
=
9
3
2
×2
(1+1−2)
=9×2
0
=9.
Giải thích:
Mỗi section có 3 cách chọn màu. Do sections độc lập nhau, tổng số cách là 3 × 3 = 9.
Prимер 3: Nhiều planks và sections

Câu: K = 4 цветa, S = 3 sections, mỗi section có N1 = N2 = N3 = 2 planks.
Tính toán:
Total ways =
4
3
×
3
(
2
+
2
+
2

3
)
=
64
×
3
3
=
64
×
27
=
1728
4
3
×3
(2+2+2−3)
=64×3
3
=64×27=1728.
Giải thích:
Mỗi section có 4 × 3 = 12 cách (vì mỗi plank sau canh phải khác màu). Trong trường hợp 3 sections, tổng số cách là 12^3 = 1728.
Những ví dụ này minh họa rõ ràng cách áp dụng công thức vào các trường hợp cụ thể. Nếu bạn muốn xem xét thêm các trường hợp khác, vui lòng chia sẻ các giá trị của S, K và N của bạn! 😊
Отлично! Давайте рассмотрим несколько примеров, чтобы продемонстрировать, как работает формула для подсчета способов покраски забора.

Пример 1: Одно разделение (S = 1)
Количество цветов (K): 2
Количество досок (N): 3
Расчет:

Total ways=K×(K−1)
(N−1)
=2×(2−1)
(3−1)
=2×1
2
=2
Объяснение: Первую доску можно покрасить в один из двух цветов. Каждая следующая доска должна быть другого цвета, поэтому всего получается 2 способа.

Пример 2: Два разделения (S = 2)
Количество цветов (K): 3
Количество досок в каждом разделе (N1 и N2): по 1
Расчет:

Total ways=K
S
×(K−1)
(N
1

+N
2

−S)
=3
2
×(3−1)
(1+1−2)
=9×2
0
=9
Объяснение: Каждый раздел имеет по 3 варианта выбора цвета. Поскольку разделы независимы, общее количество способов равно 3×3=9.

Пример 3: Три разделения с двумя досками в каждом разделе
Количество цветов (K): 4
Количество разделов (S): 3
Количество досок в каждом разделе (N1, N2 и N3): по 2
Расчет:

Total ways=K
S
×(K−1)
(N
1

+N
2

+N
3

−S)
=4
3
×(4−1)
(2+2+2−3)
=64×3
3
=64×27=1728
Объяснение: Каждый раздел с двумя досками имеет 4×3=12 способов покраски. Для трех разделов общее количество способов будет 12
3
=1728.

Эти примеры показывают, как применять формулу на практике. Если у вас есть другие значения для S, K и N, дайте знать, и мы можем рассмотреть дополнительные случаи! 😊



Подпись автора

Scratch
                      Я кроме scratch занимаюсь unity, уже сделал некоторые "сильные" проекты для моего уровня.
https://forum4.ru/uploads/001c/58/e1/7/t116631.pnghttps://forum4.ru/uploads/001c/58/e1/7/t116631.png
https://forum4.ru/uploads/001c/58/e1/7/t116631.png
                            Думал красивей получится. Лад, потом исправлю

+1

728

elisdema2013 написал(а):

(#727)

Вот разговор

Сейчас ты будешь разговаривать с чатом DeepSeek. Первый начинает чат DeepSeek
Привет, DeepSeek! Как дела? О чем ты хотел бы поговорить сегодня?

Сообщение от чата DeepSeek: Okay, so I'm trying to figure out how to solve this problem where I need to calculate the total number of ways to paint a fence with multiple sections. Each section has N wooden planks, and there are K colors available for painting each plank. The rules are that two adjacent planks cannot be the same color, but planks in different sections can be the same color without any restrictions.

Alright, let's start by breaking this down. I think it would help to visualize smaller cases first so I can see a pattern or come up with a formula. Maybe if I consider N=1 and then N=2, that could give me some insight.

For N=1, each of the K colors is available for painting. So there are simply K ways to paint a single plank in one section. That seems straightforward.

Now, when we move to N=2, things get a bit more interesting because the second plank can't be the same color as the first. For the first plank, I have K choices. Once that's painted, say it's color A, then for the second plank, I can choose any of the remaining (K-1) colors. So for each choice in N=1, there are (K-1) choices for the next plank.

So, multiplying these together, for two planks in one section, the number of ways is K*(K-1). That makes sense because it's a permutation problem where order matters and no repetition is allowed adjacent to each other.

Moving on to N=3. I already have 2 planks painted with K*(K-1) ways. For the third plank, since it can't be the same color as the second one, but it can be the same as the first. So, for each existing way of painting two planks, there are again (K-1) choices. So, this would lead to K*(K-1)*(K-2)? Wait, no, that doesn't sound right.

Wait a minute, I think I made a mistake here. Let me correct myself. For N=3, the third plank only needs to differ from the second one. It can be same as the first or any other color except the second's. So for each of the K*(K-1) ways in two planks, there are (K-1) options for the third plank because it just has to avoid being the same as the previous one.

So, the total number for N=3 would be K*(K-1)(K-2). Hmm, wait. Wait again, no. It should be K(K-1)^2? Because after choosing the first two planks with (K)*(K-1) ways, each subsequent plank only has (K-1) choices because they just need to differ from their immediate predecessor.

Wait, maybe I'm overcomplicating it. Let me think again step by step:

For N=1:
Total ways = K

For N=2:
Each plank depends on the previous one.
First: K
Second: (K-1)
So total for two planks: K*(K-1)

For N=3:
Third plank must differ from the second. So, after choosing the first two in K*(K-1) ways, the third has (K-1) options again because it's different only from the second.
Wait no, that would make total for three planks: K*(K-1)*(K-2). But wait, that doesn't seem right.

Hold on. Maybe I'm confusing this with something else. Let me think about how each new plank is added. The first plank has K options. Each subsequent plank can be any color except the one before it, which gives (K-1) choices for each additional plank after that.

So actually, regardless of N, as long as N >= 2, each additional plank beyond the second would have only (K-1) choices because they just need to differ from their immediate neighbor. So if I'm painting a row with multiple planks in one section, it's similar to counting permutations where no two adjacent elements are the same.

So for one section of N planks:

Total ways = K*(K-1)^(N-1)

Yes, that makes sense now because each new plank after the first has (K-1) choices. So for N=2, it's K*(K-1), which is correct. For N=3, it would be K*(K-1)^2, and so on.

But wait, in the initial problem statement, there are multiple sections of planks, right? Or was that just one section?

Wait no, let me go back to the original question. Oh, actually, I might have misread earlier. Let's check again:

The user said: "Сейчас ты будешь разговаривать с чатом GPT. Первый начинает чат DeepSeek"

But in Chinese, that translates roughly to something like "Now you will be chatting with ChatGPT. The first starts the chat with DeepSeek." Wait, but the actual problem is about painting a fence.

Oh no, perhaps I misread and this was just an introduction line, not the real question. Let me see: Looking back at the user's message:

"Сейчас ты будешь разговаривать с чатом GPT. Первый начинает чат DeepSeek"

Wait, that might be in Russian, so translating to English: "Now you will chat with ChatGPT. The first starts the chat with DeepSeek."

But maybe the actual question is about painting a fence? Because that was the following paragraph.

Ah, I think perhaps there's confusion here. Maybe it's part of an introduction or something else. But the main content seems to be in Chinese: "Now you will chat with ChatGPT. The first starts the chat with DeepSeek."

Wait, no, looking again:

The user wrote multiple lines in English and one line in Russian.

Wait, perhaps I'm overcomplicating this. Let me focus on the actual problem presented by the user.

Looking further, it says: "Now you will talk to ChatGPT. The first starts with DeepSeek."

And then a Chinese sentence:

"Now you will talk to me. You start with DeepSeek." Wait, no, perhaps that's part of another message. Maybe I need to clarify if the actual problem is about painting or something else.

Wait, actually, in the user's initial message, it seems like they presented an example where the first starts a chat with "DeepSeek". Then perhaps this was followed by a question: "How can you calculate the number of ways to paint N planks with K colors under certain conditions?"

But since I'm supposed to think as if I'm trying to solve such a problem, let's consider that.

So, assuming we have multiple sections, each with some planks. Each plank is in a section, and within a section, adjacent planks cannot be the same color. However, different sections' planks can be painted any color without restriction.

Wait, no, maybe it's one continuous fence? Or perhaps there are separate sections where each section is independent except for adjacency.

This needs clarification because the problem statement isn't entirely clear to me based on the initial message. So I need to make an assumption here.

Assuming that we have a single continuous fence with N planks in one section, and K colors available. Each adjacent plank cannot be the same color, but non-adjacent can be any color. Then, as before, the total number of ways would be K*(K-1)^(N-1).

But maybe there are multiple sections or fences, each with their own planks.

Alternatively, if we have a fence that is divided into several parts or has multiple independent fences, then perhaps each fence follows this same rule: first plank can be any color, and each subsequent plank in the section must differ from its immediate neighbor.

But wait, maybe it's about combining sections. For example, imagine that after painting one section of N planks with certain colors, you're adding another section next to it, which is also M planks long. But then what constraints apply across these sections?

Wait no, perhaps I'm overcomplicating again.

Let me try to approach this more systematically.

Assuming we have a single fence consisting of multiple planks in sequence. Each plank must be painted with one color out of K available colors, and adjacent planks cannot share the same color. The question is asking for how many different ways there are to paint the entire fence under these conditions.

This problem is similar to counting the number of valid colorings of a linear graph (a path) with N nodes where each node can have one of K colors and no two connected nodes (adjacent planks) share the same color.

In this case, for such a problem:

For the first plank, there are K choices.
For each
subsequent plank, there are (K-1) choices since it cannot be the same color as the plank immediately before it.

Thus, the total number of ways to paint a fence with N planks and K colors can be expressed as:

Total ways=K×(K−1)
(N−1)

This formula holds true for any number of planks N≥1.

Now, if we consider multiple sections of the fence, where each section is independent of the others, we can calculate the total number of ways to paint all sections by multiplying the number of ways for each section together.

For example, if you have S sections with N
1

,N
2

,...,N
S

  planks respectively in each section, then the total number of ways to paint all sections would be:

Total ways=(K×(K−1)
(N
1

−1)
)×(K×(K−1)
(N
2

−1)
)×...×(K×(K−1)
(N
S

−1)
)

This simplifies to:

Total ways=K
S
×(K−1)
(N
1

+N
2

+...+N
S

−S)

Here, K
S
  accounts for the first plank in each section having K choices, and (K−1)
(N
1

+N
2

+...+N
S

−S)
  accounts for the remaining planks across all sections.

If you have any specific values for N, K, or the number of sections, feel free to share them, and we can calculate a concrete example!

Сообщение от чата DeepSeek: Хорошо, я получил сообщение от чата GPT о painted fence problem. Понял, что речь идет о подсчете способов покрасить забор с plank. Вижу формулу Total ways = K × (K-1)^(N-1), где N — количество planks, K — количество цветов.

Затем говорится о разделении забора на несколько section, каждая из которых независима. Формула для总数 of ways при multiple sections выглядит сложнее, но в конце концов, упрощается до Total ways = K^S × (K-1)^(Total planks - S). Здесь S — количество section.

Пользователь просит примеры с конкретными значениями. Я должен придумать такие примеры, чтобы показать, как эта формула применяется на практике.

Первый пример: возьмем K=2 цвета и N=3 planks в single section. Тогда Total ways = 2 × 1^2 = 2 способа. Это логично, так как каждый plank после первого может быть только одним из двух цветов, чтобы отличаться от предыдущего.

Второй пример: если у нас есть S=2 sections, каждая с N1=1 и N2=1 planks при K=3. Тогда Total ways = 3^2 × 2^(2-2) = 9 способов. Проверяю: каждое section имеет по 3 варианта, и они независимы.

Третий пример: S=3 sections с N1=N2=N3=2 planks при K=4. Тогда Total ways = 4^3 × 3^(6-3) = 64 × 27 = 1728 способов. Проверяю отдельно: каждое section с 2 plank имеет 4×3=12 способов, и для трёх sections — 12^3=1728, что совпадает.

Вижу, что формула работает корректно в этих примерах. Теперь могу предоставить пользователю эти примеры с подробным объяснением.

Да, я готов помочь! Вот несколько примеров, чтобы показать, как эта формула применяется на практике:

Пример 1: Одно разделение (S = 1)

Сốv: K = 2 цвета, N = 3 planks.
Tính toán:
Total ways =
2
×
1
(
3

1
)
=
2
×
1
2
=
2
2×1
(3−1)
=2×1
2
=2.
Giải thích:
Первое plank может быть покрашено одним из 2 цвета. Каждое следующее plank должно иметь другой цвет, поэтому всего получается 2 способа.
Пример 2: Nhiều разделений (S > 1)

Câu: K = 3 цвета, hai sections, mỗi section có N1 = 1 và N2 = 1 plank.
Tính toán:
Total ways =
3
2
×
2
(
1
+
1

2
)
=
9
×
2
0
=
9
3
2
×2
(1+1−2)
=9×2
0
=9.
Giải thích:
Mỗi section có 3 cách chọn màu. Do sections độc lập nhau, tổng số cách là 3 × 3 = 9.
Prимер 3: Nhiều planks và sections

Câu: K = 4 цветa, S = 3 sections, mỗi section có N1 = N2 = N3 = 2 planks.
Tính toán:
Total ways =
4
3
×
3
(
2
+
2
+
2

3
)
=
64
×
3
3
=
64
×
27
=
1728
4
3
×3
(2+2+2−3)
=64×3
3
=64×27=1728.
Giải thích:
Mỗi section có 4 × 3 = 12 cách (vì mỗi plank sau canh phải khác màu). Trong trường hợp 3 sections, tổng số cách là 12^3 = 1728.
Những ví dụ này minh họa rõ ràng cách áp dụng công thức vào các trường hợp cụ thể. Nếu bạn muốn xem xét thêm các trường hợp khác, vui lòng chia sẻ các giá trị của S, K và N của bạn! 😊
Отлично! Давайте рассмотрим несколько примеров, чтобы продемонстрировать, как работает формула для подсчета способов покраски забора.

Пример 1: Одно разделение (S = 1)
Количество цветов (K): 2
Количество досок (N): 3
Расчет:

Total ways=K×(K−1)
(N−1)
=2×(2−1)
(3−1)
=2×1
2
=2
Объяснение: Первую доску можно покрасить в один из двух цветов. Каждая следующая доска должна быть другого цвета, поэтому всего получается 2 способа.

Пример 2: Два разделения (S = 2)
Количество цветов (K): 3
Количество досок в каждом разделе (N1 и N2): по 1
Расчет:

Total ways=K
S
×(K−1)
(N
1

+N
2

−S)
=3
2
×(3−1)
(1+1−2)
=9×2
0
=9
Объяснение: Каждый раздел имеет по 3 варианта выбора цвета. Поскольку разделы независимы, общее количество способов равно 3×3=9.

Пример 3: Три разделения с двумя досками в каждом разделе
Количество цветов (K): 4
Количество разделов (S): 3
Количество досок в каждом разделе (N1, N2 и N3): по 2
Расчет:

Total ways=K
S
×(K−1)
(N
1

+N
2

+N
3

−S)
=4
3
×(4−1)
(2+2+2−3)
=64×3
3
=64×27=1728
Объяснение: Каждый раздел с двумя досками имеет 4×3=12 способов покраски. Для трех разделов общее количество способов будет 12
3
=1728.

Эти примеры показывают, как применять формулу на практике. Если у вас есть другие значения для S, K и N, дайте знать, и мы можем рассмотреть дополнительные случаи! 😊

Свернутый текст

https://sun9-10.userapi.com/impg/F9nf6L_0gxf10EZ7uzw2k2XPh1wOUkOpVuoufw/5-qLNv_EZgw.jpg?size=604x560&amp;quality=96&amp;sign=096f258a67ce455b0b6414ac069a270a&amp;c_uniq_tag=W1KGIo9NzVs3Lb41zJZxWG-Oh1JBwXgAORpg-jgAG00&amp;type=album

Подпись автора

https://forum4.ru/uploads/001c/58/e1/5/454984.gif

0

729

Karera_77 написал(а):

(#728)

Свернутый текст

https://sun9-10.userapi.com/impg/F9nf6L_0gxf10EZ7uzw2k2XPh1wOUkOpVuoufw/5-qLNv_EZgw.jpg?size=604x560&amp;quality=96&amp;sign=096f258a67ce455b0b6414ac069a270a&amp;c_uniq_tag=W1KGIo9NzVs3Lb41zJZxWG-Oh1JBwXgAORpg-jgAG00&amp;type=album

Про крутость их разговора(это реально круто)

Подпись автора

https://forum4.ru/uploads/001c/58/e1/5/454984.gif

0

730

https://static.wikia.nocookie.net/7ce093ca-d551-4479-9efb-282e381d3e8d/scale-to-width/755

Подпись автора

https://forum4.ru/uploads/001c/58/e1/5/454984.gif

0

731

https://media.tenor.com/AwjRf981yUgAAAAM/kim-jong-un-missile.gif

Подпись автора

https://forum4.ru/uploads/001c/58/e1/5/454984.gif

0

732

Karera_77 написал(а):

(#730)
https://static.wikia.nocookie.net/7ce093ca-d551-4479-9efb-282e381d3e8d/scale-to-width/755

HD - версия
https://media1.tenor.com/m/EJ2mIpyaRk0AAAAd/snicker_doodle7-chips.gif

Подпись автора

https://forum4.ru/uploads/001c/58/e1/5/454984.gif

0

733

https://forum4.ru/uploads/001c/58/e1/5/t978253.png

Подпись автора

https://forum4.ru/uploads/001c/58/e1/5/454984.gif

+1

734

В Гугл почте теперь есть значок Дзена -
https://s14.stc.yc.kpcdn.net/share/i/12/7489686/wr-960.webp

Подпись автора

https://forum4.ru/uploads/001c/58/e1/5/454984.gif

0

735

Karera_77 написал(а):

(#734)
В Гугл почте теперь есть значок Дзена -
https://s14.stc.yc.kpcdn.net/share/i/12/7489686/wr-960.webp

Картинка не загружается…

Подпись автора

Я администратор. Я сделал очень много вещей, например кнопку чата сверху (кстати заходите, если хотите дам вам пароль от пробного аккаунта), отправку файлов (через тот чат, не удаляйте пробный аккаунт пожалуйста, иначе отправка файлов перестанет работать), тёмную тему, нормальное цитирование, выбор смайликов и многое другое.
MatrixMastodo… ой то есть Misskey
[html]<iframe src="https://shitpost.poridge.club/embed/user-timeline/a7w5npj75y?maxHeight=300" data-misskey-embed-id="v1_f2e81845-9b9f-4b1c-a8f8-4edd40b0171c" loading="lazy" referrerpolicy="strict-origin-when-cross-origin" style="border: none; width: 100%; width: 500px; height: 300px; color-scheme: light dark;"></iframe>
<script defer src="https://shitpost.poridge.club/embed.js"></script><a href=https://www.calend.ru target=_blank style="display: inline; position: absolute; margin-left: 20px;"><img src="https://www.calend.ru/img/export/informer.png" width="189" alt="Праздники сегодня" border="0"></a>[/html]

0

736

Gregon написал(а):

(#735)
Картинка не загружается…

https://forum4.ru/uploads/001c/58/e1/5/t291148.png

Подпись автора

https://forum4.ru/uploads/001c/58/e1/5/454984.gif

0

737

https://forum4.ru/uploads/001c/58/e1/5/t571064.png

Подпись автора

https://forum4.ru/uploads/001c/58/e1/5/454984.gif

0

738

https://media.tenor.com/DBHDKAAapicAAAAC/ivlev.gif

Подпись автора

https://forum4.ru/uploads/001c/58/e1/5/454984.gif

0

739

Россиянам больше нельзя держать дома страусов и крокодилов, распоряжение подписал Мишустин. В качестве питомцев также запретили слонов и медведей.

https://cdn1.ozone.ru/s3/multimedia-f/6044085543.jpg

Подпись автора

https://forum4.ru/uploads/001c/58/e1/5/454984.gif

0

740

Karera_77 написал(а):

(#739)

Россиянам больше нельзя держать дома страусов и крокодилов, распоряжение подписал Мишустин. В качестве питомцев также запретили слонов и медведей.

https://cdn1.ozone.ru/s3/multimedia-f/6044085543.jpg

Как жить то теперь?
https://i.playground.ru/p/5nfJemIoNBKlX9MgNnDNng.gif

Подпись автора

https://forum4.ru/uploads/001c/58/e1/5/454984.gif

0

Быстрый ответ

Напишите ваше сообщение и нажмите «Отправить»



Вы здесь » Форум РОС » Темы для общения » ★Тема для общения!★ (7.0)